SAG(09)10

Report of the SAG Research Inventory Review Group

1. Introduction

1.1 Background to the SALSEA Plan

Records of the numbers of salmon returning to monitored rivers indicate that, despite drastic reductions in directed fisheries, there has been at least a threefold reduction in marine survival rates since the early 1970s. The reductions in the numbers returning has been accompanied by a marked decline in the proportion of older sea age fish, so much so that 3SW fish are relatively rare in many systems and 4 & 5SW fish vanishingly so. Such a change in an age distribution is a classic symptom of a sustained increase in mortality rate, a conclusion which is supported by the current relative scarcity of repeat spawners in the returning populations.

Other factors which might have contributed to the proportional reduction in the representation of older fish include, higher rates of mortality on non-maturing fish than on maturing ones, a sustained increase in maturation rates and a reduction in the representation of late-maturing populations among the returning stocks. Although all three of these explanations are credible, they do not alter the main conclusion that Atlantic salmon, especially those in the southern part of the species' range, are currently suffering from a raised level of marine mortality which is sustained across all sea age classes.

The IASRB therefore developed the SALSEA Plan (SAL(04)05) to outline the research requirements to address this problem. This included studies of factors affecting juvenile salmon in freshwater and smolts emigrating through coastal waters which may affect their subsequent survival during the marine phase as well as factors directing impacting the fish while they are in the open ocean. While research is required in all these areas, the IASRB has specifically sought to support practical studies of the distribution and migration of salmon in the sea (including studoies of by-catch in pelagic fisheries), and studies of biological processes (e.g. environmental, food, predation, growth, parasites and diseases) relating to the marine phase of the life-cycle for potential.

1.2 Terms of Reference

The International Atlantic Salmon Research Board's (IASRB) inventory of research relating to salmon mortality in the sea was established in 2002 and has been updated annually since then. It is an essential tool in the development of research priorities for potential funding and in better coordinating existing research efforts.

At its annual meeting in 2008, the Scientific Advisory Group (SAG) of the IASRB welcomed the valuable information presented in the inventory but agreed that consideration should be given to how this information could be better utilised. The IASRB therefore agreed to a

proposal from the SAG to establish a Sub-Group comprising at least one representative from each Party, chaired by Ted Potter (EU) and with the following terms of reference:

- to review the inventory to identify areas where there may be merit in encouraging improved coordination of research and
- to highlight gaps in the research programme where new work might significantly benefit the SALSEA Programme and which might be considered for funding by the Board.

The Sub-Group was to work by correspondence and report back to the SAG in 2009.

1.2 Summary of Research Inventory – SAG(09)02

The inventory of research is maintained by the NASCO secretariat. This involves seeking updates from NASCO Parties at the beginning of each year to include new projects that have been funded or approved, to record changes to existing projects and provide progress reports, and to note projects that have been completed. The NASCO secretariat also provide an annual summary of the projects in the form of four tables:

Table 1: Approximate annual expenditure on research in relation to salmon mortality at sea by topic area and Party;

Table 2: Inventory of research relating to salmon mortality in the sea – allocation of projects by topic area;

Table 3: Expenditure on ongoing projects in the inventory of research of relevance to the SALSEA programme; (NB This table contains no financial data and so the heading could be clarified by omitting 'Expenditure on').

Table 4: Summary of ongoing and completed research projects relating to salmon mortality in the sea. (a.) Ongoing projects (b) Completed projects

This report draws heavily on these very helpful tables as a basis for highlighting gaps and opportunities for collaboration and co-ordination.

1.3 Method of working

It was agreed that the Sub-Group would conduct their review on the 2009 update to the research inventory, which was made available to the Sub-Group towards the end of April. As the objectives of the review relate specifically to the SALSEA programme, the Sub-Group used the structure of the SALSEA Plan (SAL(04)05) to organise the review. Each member of the Sub-Group was asked to consider the work being undertaken in relation to a particular Workpackage Task in the Plan and assesses the extent to which the current research projects listed in the inventory appear to address the identified research needs (or new research requirements). In parallel with this, the work being undertaken under each Task was reviewed to identify areas where there may be opportunities to further improve collaboration and co-ordination. The conclusions from these reviews are reported below for each of the Workpackage Tasks in the Plan with information relating to both terms of reference being combined; the final section summarises the recommendations.

The review was complicated by the fact that the projects listed in the inventory are renumbered each year, with completed projects having no numbers. In addition, less information is provided for the completed projects. It is suggested that the structure of the inventory should be reviewed to make it easier to access information on ongoing and completed projects.

Conclusion:

a. The structure of the IASRB research inventory should be reviewed to make it easier to access information on ongoing and completed projects relating to salmon mortality in the sea.

2. Work Package 1: Supporting Technologies

2.1 Workpackage 1 - Task 1: Genetic tagging to determine stock origin – (TP)

2.1.1 Task Objectives:

The overall objective of this task is to map regional genetic structure of Atlantic salmon and establish a standardised genetic baseline database for regional or river-specific populations.

The specific objectives are:

- i. Review existing knowledge of genetic structure within the distribution area of Atlantic salmon, and establish an overall picture of population structure;
- ii. Compile an inventory of available samples, both recent and historical, that could be used in a larger-scale mapping of genetic structure;
- iii. Establish a cooperative programme between the principal genetic laboratories in Europe and North America to screen the major salmon stocks. This will be accomplished by selecting a suitable array of genetic markers, based upon the level of variation observed in previous studies and calibrating the scoring between participating laboratories;
- iv. Based on the results from the above studies select an experimental set of populations to be sampled;
- v. Review the results and determine whether sufficient precision is achieved for the purposes outlined in the core SALSEA tasks. Expand and include more areas and populations in the baseline as required;
- vi. Establish a standardised database of genetic structure of baseline populations;
- vii. Carry out comparative studies using conventional tags of known origin to provide support for genetic identification;
- viii. Establish a "Biobank" of samples collected, and also of DNA extracts that can be made available for other purposes at later stages.

2.1.2 Assessment:

There are nine current projects (D1, E2, E11, E16, E19, E20, I4, N3, F1) and four completed projects in the inventory involving the use of genetics techniques, although not all are directly related to genetic stock identification (GSI) which is the central theme of this Task. The main areas being addressed are the development of genetic baselines of Atlantic salmon stock, the application of genetic stock identification in management and the use of genetic

techniques in population studies. We are also aware of additional programmes to develop and apply genetic baselines (e.g. in USA), and to coordinate these studies (e.g. the SALMAN programme), which do not appear to be included in the inventory.

Genetic stock identification (GSI) is an integral part of the SALSEA Programme because it was selected in preference to tagging as the primary method to be used to identify the region of origin of fish sampled in marine surveys. In addition, increasing numbers of countries are developing more detailed genetic baselines for their stocks to aid in stock conservation and fishery management activities. To support this work extensive efforts have therefore been made in recent years to establish a network of groups working on salmon genetics, to agree upon sampling and analytical protocols, and to select a standard set of micro-satellite markers.

Baseline genetic datasets that have already been established for a number of countries including USA, Ireland and Canada, and this work is being extended as part of the SALSEA-MERGE project (E1) and in national programmes in Iceland (I4), UK(England and Wales) (E2) and Norway (N3). GSI is also being used to identify the continent of origin of salmon caught at West Greenland (D1), and thereby in the development of catch advice by ICES, and for samples collected in St Piere et Miquelon (F1).

Other genetic studies are being undertaken on the heritable effects of fishing (E11), the exchange of stocks between rivers (E16), the susceptibility of stocks to G.salaris (E19), and to identify genomic regions that affect ecologically and economically important phenotypic traits (E20).

Conclusion:

- a. It appears that there are good mechanisms in place (including through SALSEA-MERGE) to co-ordinate genetic studies in Europe, including ensuring all groups use the same satellite markers and comparable sampling and analytical techniques. However, there was felt to be some lack of co-ordinations between current genetics work on Atlantic salmon in Europe and North America, although the European groups were understood to have good contacts with geneticists working on Pacific salmon.
- b. Some concern was expressed about the need to clearly distinguish between the delivery of practical results employing established techniques (e.g. microsatelitte markers) from the efforts to develop new techniques (e.g. SNPs).

2.2 Workpackage 1 - Task 2: Sampling equipment evolution to increase the sampling efficiency for salmon at sea (TS)

2.2.1 Task Objective:

The overall objective of this task is to initiate research efforts to develop smolt trawl design to minimize size selection. No detailed objectives are specified within the SALSEA Plan.

2.2.2 Assessment:

According to the Inventory, there are no ongoing efforts being directed towards this task. However, as the inventory is an "Inventory of Research Relating to Salmon Mortality in the Sea", it is possible that some relevant research activities (e.g. possible in Norway) have not been reported because they directly involved with investigating salmon mortality at sea. In addition, significant efforts have been made to standardize the survey methods used between the current marine survey programmes.

There is one completed project (European Union – United Kingdom (Scotland) - Testing and development of Institute of Marine Research (IMR), Bergen, Norway, salmon trawl gear), which successfully trialed the use of an open trawl digital observer/analyzer.

The inventory list three projects being undertaken in Canada (C1), Europe (E! - SALSEA-MERGE), USA (U5) which are undertaking marine surveys using similar gear, and these are assumed to impart a size selective bias in their catches. The objective of this Task was to find ways to reduce the size selection, but work in the area has not occurred to the extent envisioned in the SALSEA Plan (SAL(04)05). Any new or ongoing efforts will likely not benefit the SALSEA Programme as we are entering the 2nd and final year of the marine surveys.

Conclusions:

- a. Efforts should be made to determine the extent of the possible selective bias in the current marine sampling programmes (e.g. of different sized smolts emigrating from different areas and at different times) in order that this can be taken into account in the analysis of the results.
- b. There remains a need for further developmental work on methods to sample post-smolts and adult salmon in the open ocean that are less selective than the methods currently in use. Such work should be included in any future programme to extend marine survey and sampling programmes for salmon.

2.3 Workpackage 1 - Task 3: Signals from scales (SP)

2.3.1 Task Objectives:

The overall objective of this task is to establish standardised scale analysis techniques and identify marine growth histories and anomalies indicating common mortality factors on spatial and temporal scales.

The specific objectives are:

- i. Ensure that results from scale analysis equipment in selected European and North American laboratories is comparable;
- ii. Carry out scale analysis training for all participating laboratories by North American experts while ensuring that agreed-upon standardised scale examination procedures are being followed;
- iii. Carry out scale analyses on selected scale sets with a view to establishing a comparable database between laboratories;
- iv. Coordinate the examination of scale material available from several research agencies (or from different stocks and stock components) to identify spatial and temporal anomalies in the time series of scale growth during the marine

2.3.2 Assessment:

There are two main strands to this work area, relating to the analysis of scale growth patterns and scale microchemistry. Three ongoing projects listed in the inventory (E7, E10, C5) are specifically related to this Workpackage Task. These projects focus on the analysis of scales from existing and new collections in Scotland, England and Wales and Canada together with scales taken from salmon sampled in the ocean. In addition, at least four of the completed studies undertaken in Canada, USA, England and Norway addressed similar topics. These analytical techniques will also be applied to scale samples collected from salmon caught during the marine surveys (E1, C1, I5 and U5).

There is a considerable collection of historic scale material available from most salmonproducing countries, and the results coming out of the studies suggests that analysis of scale microchemistry is likely to provide very important insights into the factors affecting salmon in the sea. The first requirement in analysing these scale collections and comparing results between countries is to ensure the use of standardised scale analysis procedures between laboratories. It is understood that, significant efforts have been made to standardize the methods used within SALSEA-Merge (E1), particularly in relation to the analysis of growth patterns, but there remains a need for further co-ordination between the European and North American programmes.

The Review Group was aware that concerns have also been expressed about the need to establish standardized protocols for analysising scale microchemistry to ensure that results between laboratories and countries are comparable. Prof Clive Trueman (Southampton University, UK), who is managing project E7, is hoping to arrange such a workshop to bring together scientists using these techniques.

Conclusions:

- a. It is important to ensure that the results obtained from the scale analyses being undertaken by different research groups are comparable and can be brought together in the ultimate synthesis of results. SAG should investigate this requirement further to determine whether there is a need for a workshop and whether this should be supported by the IASRB.
- b. If a workshop on scale analysis is establish it could also discuss the feasibility of establishing a common scale database for all countries with historic scale data that may be used in scale growth and microchemistry analyses.
- c. At their meeting in 2008, the ICES Study Group on Salmon Age Reading, which had previously included only Baltic salmon biologists, recommended that they should extend their remit to bring in Atlantic salmon biologists for a meeting in 2010. It was suggested that any future meeting of SGSAD should be coordinated with current activities with the SALSEA Plan.

3.1 Workpackage 2 - Task 1: Investigate the influence of biological characteristics of Atlantic salmon smolts on their marine mortality (TP)

3.1.1 Task objectives:

The overall aim of this task is to identify differences in the marine survival of smolts with different characteristics, and determine the extent to which such factors could account for widespread changes in salmon stock abundance.

The specific research objectives are to:

- i. Identify the key biological variables among smolts that may affect marine survival and evidence of widespread changes in these characteristics in stocks;
- ii. Determine the impact of smolt characteristics on migratory behaviour;
- iii. Determine the impact of smolt characteristics on marine survival and return of spawning adults;
- iv. Model the impact of smolt characteristics at the population level;
- v. Determine management options.

3.1.2 Assessment:

The inventory lists 13 ongoing studies (C3, E5, E8, E9, E13, E15, E18, E21, I1, N2, R1, U4) that are collecting data directly relevant to this Task, and many of these are long-term monitoring programmes. In addition a number of completed projects have provided relevant information.

There is growing evidence from these and other studies that the growth and survival of salmon in the sea may be related to various biological characteristics of smolts. Studies in this area are therefore particularly important because these are also factors which are likely to be more amenable to management intervention.

Data from many of the above programmes provide important inputs to the work of the ICES North Atlantic Salmon Working Group and the development of advice for NASCO. In addition, in response to a specific question from NASCO, ICES has established the Study Group on the Identification Of Biological Characteristics For Use As Predictors Of Salmon Abundance [SGBICEPS] which met in 2009 to: identify data sources and compile time series of data on marine mortality of salmon, salmon abundance, biological characteristics of salmon and related environmental information; consider hypotheses relating marine mortality and/or abundance trends for Atlantic salmon stocks with changes in biological characteristics of all life stages and environmental changes; and conduct preliminary analyses to explore the available datasets and test the hypotheses. IASRB provided some financial support for the first meeting of this Study Group, which enabled two scientists working outside national laboratories to participate.

The first meeting of this Study Group highlighted the value of combining the analysis of data from a number of different monitoring programmes around the North Atlantic, but also highlighted the severe difficulties in obtaining comparable data from these programmes. This Study Group is likely to have at least two more meetings.

This is a complex and difficult area of research. It is costly to run extensive monitoring programmes and data must generally be collected over a substantial time period (e.g. more than 10 years) to provide useful results. Furthermore, co-ordination of such programmes is problematic because the various on-going programmes use a range of different techniques and collect a range of different information. However, the drivers to maintain the same approaches with the time-series tends to be stronger that the driver to use comparable approaches with other groups undertaking similar studies.

Conclusions:

- a. The ICES SGBICEPS could provide a suitable forum for co-ordinating work on the influence of biological characteristics of Atlantic salmon smolts on their marine mortality; consideration should therefore given to including this in the terms of the reference for future meetings;
- b. IASRB should be asked to consider providing funding for the participation of two experts from outside national laboratories in the future meetings of SGBICEPS.

3.2 Workpackage 2 - Task 2 - The impacts of physical factors in fresh water on marine mortality of Atlantic salmon (LPH)

3.2.1 Task objectives:

The overall aim of this task is to assess the effects of physical variables on marine survival. The goal is to identify common or differing trends in freshwater physical conditions that are common throughout the geographic range, or within a geographic region, and that may modify factors such as smolt quality or migratory behaviour and reduce the ability of smolts to physiologically adapt to the marine environment.

The specific objectives are to:

- i. Determine the impact of physical variables at the time of smolt emigration on survival to the open ocean (i.e. to adapt to sea water conditions and thrive and grow in marine conditions and return to natal fresh water to breed) (Sub-task 1);
- ii. Determine the impact of key physical variables, such as temperature, flow, turbidity, on the run-timing of wild salmon smolts and consequent survival to the open ocean (Sub-task 2);
- iii. Determine the impact of physical variables on behaviour of smolts during the transition between the freshwater and marine environments and on the abilities of smolts to survive the transition from fresh to sea water (Sub-task 3);
- iv. Determine impacts of coastal transition waters on survival of returning adults into the river (Sub-task 4);
- v. Model the impact of freshwater physical variables on Atlantic salmon at the population level (Sub-task 5);
- vi. Determine management options for mitigating impacts (Sub-task 6).

3.2.2 Assessment:

Physical conditions experienced by Atlantic salmon smolts within fresh water may be critical to their subsequent survival in the sea. For instance, water flow and water temperature, both of which may be mediated by climate change, can modify growth, inhibit or delay smolt

emigration, reduce sea water adaptation and marine survival, and influence maturation. Marine survival may also be affected by the transitional conditions, such as temperature, between fresh and saline waters.

The inventory lists two projects (E3 and E4) that specifically address the objectives of this Task. In addition, some of the projects in the inventory covering biological factors of smolts on marine mortality (WP 2:1) may include effects of physical variable as well, and there may also be overlap with WP 2:2, 2:3 and perhaps 2:4.

There is obviously a large amount of information available on how physical factors in freshwater affect the life history and behaviour of salmon, and consequently marine performance such as migration, growth and mortality. Interaction between several of these factors may result in synergistic effects which in turn may increase marine mortality.

There has been no major general and complete analysis of such information. The first step should be screening of literature and development of a network of scientists who are already funded and working in this area, to promote complementary studies, avoid duplication and gain from cooperative planning and analysis of existing data. A preliminary descriptive model of factors in freshwater that affects behaviour, life history and survival and the interaction between them should be developed. The next step would be to run the model(s) by utilizing available quantitative information. When focusing on marine survival this is not an easy task, but a first result of this may be to identify the major gaps in the knowledge and their relative importance.

The network should arrange workshops to synthesize the results, the first could prepare an inventory of completed and ongoing research (literature survey) and to develop the descriptive model. Later, workshops would then be held in order to synthesise results and coordinate ongoing and future work and/or develop an integrated research programme that would address various subtasks.

Realistically the main costs should be covered by the parties, but the fund could support the participation of external scientists with special skills.

Conclusions:

- a. Efforts should be made to establish a network of scientists working on topics related to the effects of physical factors in fresh water on marine mortality of Atlantic salmon in order to promote complementary studies, avoid duplication and gain from cooperative planning and analysis of existing data. The ICES Study Group, SGBICEPS could provide a means for establishing such a network (see 3.2.1 Conclusion (a).)
- b. A preliminary descriptive model of factors in freshwater that affects behaviour, life history and survival and the interaction between them should be developed and run utilizing available quantitative information. This should provide a mechanism to identify major gaps in knowledge and to assess their relative importance.

3.3 Workpackage 2 - Task 3: *Preparing to migrate – investigate the influence of freshwater contaminants on the marine survival of Atlantic salmon* (NOM)

3.3.1 Task objectives:

The aim of this programme is to assess the effects of freshwater contaminants that are common throughout the geographic range of Atlantic salmon, on marine survival and their potential role in the widespread decline of stocks.

Specific objectives:

- i. Identify freshwater contaminants that are common throughout the geographic range of Atlantic salmon and that might be expected to modify migratory behaviour and/or reduce the ability of the smolts to physiologically adapt to the marine environment (Sub-task 1);
- ii. Determine the effect of environmental levels of the target contaminants on the parrsmolt transformation and the ability of smolts to survive in marine conditions (Sub-task 2);
- iii. Determine the impact of the target contaminants on run-timing of wild salmon smolts and the migratory behaviour of smolts during the transition between the freshwater and marine environments;
- iv. Determine the impact of target contaminants on marine survival and return of spawning adults (Sub-task 5);
- v. Model the impact of freshwater contaminants at the population level;
- vi. Provide management options for resolving impacts identified in these studies.

3.3.2 Assessment:

The inventory lists only one current project (E3) and two completed projects (one of which was undertaken by the same team as E3) specifically aimed at understanding the role of freshwater contaminants in the early stages of salmon migration. However, the Review Group was aware of other ongoing studies, including in USA and Norway, which are not included in the inventory. The limited work in this area is unfortunate because these study have clearly indicated that exposure of smolts to some contaminants (including some widely used pesticides) can significantly reduce the survival of smolts on transition to salt water and these are areas which are clearly amenable to management intervention.

Sub-task 1: Identifying freshwater contaminants

This is mainly a desk study and could be progressed relatively easily. There is probably some work ongoing in UK (England and Wales) and US.

Sub-task 2: Effects of contaminants on parr-smolt transformation

This is mainly lab based – more difficult to progress – most work being undertaken in UK (England and Wales) and US.

Sub-task 3: Effects of contaminants on migratory behaviour and distribution Sub-task 4: Effects of contaminants on smolt behaviour and distribution Sub-task 5: Effects of contaminants on adult return rates

All the above sub-tasks could be linked to any of the river monitoring or sampling programmes which handle smolts or other juvenile stages and which could provide sample material for telemetry or exposure to specific contaminants before release particularly if fish

are being micro-tagged. The main focus is for groups of fish to be marked (e.g. PIT tagged) and exposed to environmental levels of contaminants for periods during the parr-smolt transformation. Therefore access to juveniles/smolts for PIT tagging, tracking of juveniles and survival is the common theme etc and links could be developed from some of the ongoing monitoring programmes. A large number of the projects listed in the inventory therefore have potential to provide suitable material to these sub-tasks (e.g. C4, E3, E4, E13, E8, E15, E17, E18, E21, I1, N2, N4, N6, R1, U1, U2, U3, U5)

Sub-task 6: Modelling impacts at a population level

This is mainly a desk study which would depend on some output from the laboratory experimental, field experimental and telemetry work above. This probably can't be progress too far yet.

Conclusions:

There is potential for a number of on-going programmes to contribute to the studies of the effects of freshwater contaminants on the marine survival of salmon, and those working in these areas should be encouraged to make best use of these opportunities.

3.4 Workpackage 2 - Task 4: The part played by key predators (DS)

3.4.1 Task objectives

The overall aim is to determine the contribution of predation by key predators to the marine mortality of salmon.

The specific objectives are to:

- i. Determine the proportion of out-going smolts and returning adults that are removed by predation, to identify the predator(s) involved, and to determine the time, location, and circumstances of this predation;
- ii. Compare current patterns and intensities of predation with the situation prior to the salmon decline.

3.4.2 Assessment:

The inventory lists one ongoing project (U6) related to reducing cormorant predation on emigrating smolts and one completed project on the effects of seals on adult salmon returning through estuaries.

The observed increases in marine mortality of salmon almost certainly mean that a greater proportion of the fish going to sea are being consumed by predators, but it is unclear whether this is a direct effect (e.g. the result of an increase in the number of predators) or a secondary effect (e.g. reduced fitness of the fish or other factors making them more vulnerable to predation). As a result of over-exploitation in human consumption fisheries, the numbers of large predatory fishes in the north Atlantic capable of catching salmon is at an all time low. However, there has been no such reduction in the numbers of surface-feeding and diving bird populations, nor in those of large marine mammals like dolphins and Atlantic grey seals, indeed, grey seal numbers are currently at record levels sustained, perhaps, by dead and dying fish discarded from fishing vessels. There is therefore remains a need to assess whether

increased predator numbers in specific regions of the ocean or at specific times could account for observed reductions in marine survival of salmon. If this is demonstrated, direct investigation of predation on salmon could be focused on estimating losses to marine mammals and birds in areas where the problem appears greatest.

Because small fishes are easier to catch than large ones, studies of predation cannot be isolated from studies of growth and of the abundance of the prey species that sustain it. In the latter instance it is important to know how much reductions in the abundance of important prey species such as sandeels and capelin are driven by fishing mortality and how much by changes in marine climate.

Conclusions:

- a. There is a need to assess whether increased predator numbers in specific regions of the ocean or at specific times could account for observed reductions in marine survival of salmon.
- a. There are a range of options for extending current studies on the evaluation of levels of predation on salmon stocks in areas where potential problems are identified:
 - Extend the study the occurrence of salmon DNA in seal scats to a wider range of haul out sites (Marine Scotland FW Laboratory and SMRU).
 - Extend the application of P.I.T detection technology currently being used to study sea trout predation by seals to salmon (Marine Scotland FW Laboratory and SMRU).
 - Intensify observations on cetacean predation on salmon (SMRU).
 - Initiate study of the occurrence of salmon tags and salmon DNA at *coastal* bird colonies.
 - Review the current status of industrial fisheries in the north Atlantic.
 - Extend the study of salmon migration pathways to the central and northern North Sea.

3.5 Work Package 2 - Task 5: The impacts of aquaculture on mortality of salmon (TP)

3.5.1 Task objectives

The objective of this Task as stated in the SALSEA Programme was for NASCO and ICES to hold a symposium in 2005 on 'Interactions between aquaculture and wild stocks of Atlantic salmon and other diadromous fish species: Science and Management, Challenges and Solutions'.

The objectives of the symposium were:

- i. To summarise available knowledge on the interactions between aquaculture and wild stocks of Atlantic salmon and other diadromous species;
- ii. to identify gaps in current understanding of interactions and develop recommendations on future research priorities;
- iii. to review progress in managing interactions of aquaculture, the challenges that remain and possible solutions;
- iv. to make recommendations for additional measures, including cooperative ventures between the various stakeholders, to ensure that aquaculture practices are sustainable and consistent with the Precautionary Approach.

3.5.2 Assessment:

The Symposium specified in the objectives was held and the proceedings written up and published. Since that time the SALSEA Plan has not been updated and it is not clear what the priorities are for future work in this area, relating to the potential effects of aquaculture on marine mortality of salmon.

The inventory lists three ongoing projects (E11, N1 and N5) and four completed projects on the effects of sea lice on wild salmon, the treatment of sea lice in cages and the prophylactic treatment of wild smolts. In this context there is worrying evidence that some strains of sea lice may be gaining resistance to the current treatments in some areas. There have also been two studies involving the release of tagged farm fish to determine their patterns of dispersal and one on the effects of contaminants emanating from freshwater aquaculture facilities on the survival of smolts after they enter the sea.

We understand that the Salmon Farming Liaison Group will be reviewing research requirements relating to the potential impacts of aquaculture, and that the development of Focus Area Reports in this area will allow a more detailed evaluation of current research activities.

Conclusion:

a. The SALSEA Plan needs to be reviewed and updated to spell out the need for any future work on the impact of aquaculture on the marine mortality of salmon.

4. Work Package 3 – Investigating the Distribution and Migration of Salmon at Sea

4.1 Work Package 3 - Task 1: Distribution and migration mechanisms - (JAJ)

4.1.1 Task objectives:

The overall aim of this task is to develop theoretical migration models from existing studies to facilitate surveys and provision of advice for contemporary migration and distribution theory testing.

The specific objectives are:

- i. To assemble all available scientific data, both near-shore and open ocean, on post-smolt distribution, migration, growth and feeding at sea;
- ii. Review current investigations using oceanographic data so as to refine/develop predictive tools for assessing marine thermal habitat preferences and possible oceanic migration paths;
- iii. Test the hypothesis that distribution and stock composition are stable over time by examining time series of oceanic and home-water tag recoveries and from scale sampling programmes;
- iv. Review the existing information on differences in the behaviour and survival of hatchery and reared salmon at sea.

4.1.2 Assessment:

The first step in WP3.1 is to ensure that the best use is made of all existing survey, tracking and tagging results, available biological and oceanographic data, along with existing knowledge of salmon migrations, in order to develop hypotheses about salmon distribution and behaviour which can be tested, to improve the resolution of the proposed marine sampling tasks WP3.3.

There are no ongoing projects in the inventory that are solely related to this topic, but the development of migration models has also been addressed by two completed projects and is included within SALSEA-Merge (E1). Some work has also been done on salmon post-smolt migration in relation to sea-surface temperatures in the North Sea/Norwegian Sea by Norwegian scientists and west of Scotland/Norwegian Sea by Scottish scientists.

The analysis of historic tagging salmon data has also been addressed by a series of ICES Workshops.

Conclusion:

a. Further studies relating to the production and distribution of important marine organisms to physical parameters such as sea surface temperature, currents, wind speed, wave action, salinity, etc. are needed to facilitate and enhance a comprehensive study of the distribution and migration mechanisms for salmon in the sea.

4.2 Work Package 3 - Task 2 – A common approach –(TS)

4.2.1 Task objectives:

The overall aim of this task is to refine the plans for a large-scale marine survey programme and standardization of trawl survey techniques between the participating partners

The specific objective is: To develop Standard Operating Procedures and plan the large-scale marine survey programme.

4.2.2 Assessment:

According to the Inventory, there are no ongoing efforts being directed towards this task. However, it is possible that some studies relevant to this task have not been reported because they are not considered to be directly related to investigating salmon mortality at sea. There have been various meetings to develop the details of the SALSEA research program and specifically plan the large-scale marine survey programmes and ensure that the same methods are used.

There are five projects (C1, E1, U5, D1, F1) listed in the inventory that will be undertaking marine surveys for salmon (both trawl and land based). There have been numerous coordination efforts within and between these projects to develop standardized operating procedures with standardized data collection requirements. Project leaders have informally met at various meetings (including the 2008 NASCO Annual Meeting) and communicated

via email to develop standardized protocols. However, no overarching Trawl Standardization Working Group has been developed for the entire SALSEA Program (SALSEA-Merge, SALSEA North America and SALSEA Greenland).

Conclusion:

a. Work on the further development of trawl survey techniques has not occurred to the extent envisioned in the SALSEA Plan. Any new or ongoing efforts will likely not benefit the current programme of marine surveys as we are entering the 2nd and final year of that programme.

4.3 Work Package 3 - Task 3: Salmon at sea - (GG)

4.3.1 Task objectives:

The overall aim of this task is to carry out a comprehensive marine survey to collect samples and information required to compare migration patterns, distribution and possible factors affecting survival of reared and wild salmon post-smolts at sea

The specific task objectives are to:

- i. Determine the ocean migration patterns of salmon from fresh water to return to home waters;
- ii. Provide adequate samples to describe the major migration routes and distribution of Atlantic salmon at sea;
- iii. Provide samples for regional stock identification using the genetic baseline studies;
- iv. Collect information on sea surface temperature, salinity, current speed, direction and other oceanographic and hydrographic information;
- v. Collect information on the predators and prey of salmon;
- vi. Determine the distribution of salmon in relation to:
 - Sea temperature and currents;
 - Presence of prey;
 - Presence of predators;
 - Presence of competitors;
 - Ocean up-welling and productivity;
- vi. Collect and analyse oceanic data (physical, chemical, biological) compared to the relative abundance of salmon (adults and post-smolts) captured in targeted trawl or sampling surveys;
- vii. Collect information (scales, growth information, sex ratios, etc.) for studies on the energetics of oceanic migration;
- viii. Integrate the SALSEA programme with major marine studies being undertaken by bodies such as ICES, NOAA and Fisheries and Oceans, Canada.

4.3.2 Assessment:

The inventory list 17 ongoing projects related to this Task, four marine surveys (C1, E1, I5, U5), nine acoustic tagging surveys (C2, C4, C6, E17, N4, N6, U1, U2, U3), two studies employing data storage tags (I2, I3) and one looking at trends in biological characteristics of returning salmon (E12). This part of the SALSEA Plan has been identified as being of prime important to the IASRB and is therefore central to their current research and funding efforts.

This WP is highly likely to give new and valuable information on presence/absence of postsmolts in the areas to be covered. Additional information on ocean conditions, presence of prey, presence of predators, ocean up-welling, as well as physical, chemical and biological information will be compared to relative abundance of salmon. The results can be compared to already available marine studies undertaken by ICES, NOAA and others.

Biological samples like genetic mapping and origin of fish, growth rate, scale pattern, isotopes, etc will also provide new information on salmon in the sea. In threes areas there is a need to ensure that the results obtained by different groups are comparable, and it would be desirable to develop co-ordinated programmes to provide good coverage of the North Atlantic.

Information on environmental factors from fish that have survived the marine phase can be looked at as a "gap" in the already listed SALSEA projects. Although post-smolts are caught in the sea it will not be clear if they are those that will survive or the actual importance of those areas. WE will not know whether the surviving fish are coming from the "hotspot" areas covered by research ships cruises.

Information sampled by data storage tags (DST), like temperature, depth, salinity, location (GPS) etc. could to some extent fill this gap by giving additional information on at least some environmental factors sampled by DST recorders carried by the surviving fish. Areas known to have high sea survival of Atlantic salmon should be prioritized or other areas known to be important or of special value for the salmon distribution and/or existence. This could also be used in areas that are not covered by the SALSEA sampling program.

The use of DST should be encouraged for use on:

- Hatchery smolts. DST tags for tagging hatchery smolts are already available and in use. Although it is not known to what extent they reflect the lifecycle of wild salmon.
- Wild smolts. DST tags for wild smolts are under development. For example wild smolts from River Ellidaar, S-W Iceland will be tagged internally with dummy DST tags with PIT inside in spring 2009.
- Kelts. At least few types of DST suitable for tagging kelts are available and in use. In some areas they are giving valuable information on the ocean habitat preferred by kelts. This part of the salmon population is of high importance in many areas and needs more attention.
- Fish farm escapees fish released intentionally. Large adult salmon from fish farms could be tagged with "pop-up" DST tags already in use for tagging Tuna. These tags could give information on the environment in areas used by both the fish recovered as well as from fish that do not survive. This will also have the potential for comparison of the fish that dies and fish that survive.

The advantages of using DST are:

- They do not require expensive marine vessels for collection of samples and measurements of environmental factors.
- They collect information from individuals closing the marine phase of the lifecycle.

Disadvantages are:

- The tagged fish needs to be recovered as well as the tags.
- Expensive, while the development costs are paid.
- High number of tags not recovered (depends on survival rate).
- Limited number of parameter recorded as well as limited number of records.

Conclusions:

- a. The use of tagging technologies, particularly archival tags, should be encouraged as a cost effect method to complement and enhance the results from marine surveys.
- b. Efforts should be made to co-ordinate studies of the condition and lipid content of 1SW & 2SW salmon returning to netting stations in northern and eastern Scotland (Marine Scotland FW Laboratory and Scottish Oceanographic Institute, St. Andrews) with related work elsewhere to provide comparable results from different parts of the North Atlantic.

4.4 Workpackage 3 - Task 4: Distribution and migration –(TP)

4.4.1 Task objectives

The overall aim of this task is to analyse and collate data from the marine surveys, report on the distribution of salmon at sea, report on the biological and physical oceanographic factors which influence migration and distribution of Atlantic salmon and report on natural and manmade mortality factors which may significantly affect survival of salmon at sea

The specific task objectives relating to different sets of results are:

Genetic assessment of stock composition:

• Evaluate the stock composition of the samples at differing geographic scales and assess deviations from expected proportions.

Man-made effects

- Evaluate ICES SGBYSAL report in relation to new data collected during trawl surveys;
- Evaluate the effects of directed fishing mortality;
- Assess the level of ocean contaminants in areas where post-smolts are located.

Predators

- Provide an assessment of predation from historical data and records;
- Compare the distribution of salmon and their predators.

Productivity

- Assess the effect of varying ocean productivity on survival of salmon;
- Combine existing time series of survival and growth of salmon with productivity studies, plankton surveys, weather satellite surveys, etc.

Food availability

- Examine whether the survival of salmon is dependent on the distribution and relative abundance of prey types (fish, crustaceans, squid);
- Investigate the distribution and abundance of prey types in relation to salmon survival. *Growth effects*
- Investigate the relationship between survival and growth rate with new data and samples from the research surveys (Work Package 2).

Water temperature

• Investigate the relationship between survival and water temperature from existing long time-series and new data on SST, fixed stations and transects, DST data from the research surveys (Work Package 2).

Competition

• Examine the relationship between survival and competition with other pelagic fish species (herring, mackerel, blue whiting, lumpfish) taking into consideration: competition for food, competition for space, schooling effects.

Combined synergistic effects

• Consider overall natural mortality as a result of combined synergistic effects.

4.4.2 Assessment

The objectives in this Task are obviously picked up in many of the research projects in the inventory, particularly those such as SALSEA-Merge (E1) which involve large integrated programmes. There would be value in developing models which begin to bring some of these information streams together with the aim of exploring more fully the data coming out of these programmes and identifying more clearly the most important gaps in our understanding of the factors that may be having the greatest impact on marine survival.

Conclusion:

There is a need to initiate the development of an integrated model covering the whole presmolt and smolt phase with main focus on survival.

5. Summary of comments and conclusions:

This section summarizes the comments and conclusions from the review (numbers in parenthesis indicate the sections in which the conclusions appear in the report):

5.1 Overall conclusions:

- a. There is a need for increased co-ordination between groups undertaking work related to the SALSEA Plan, particularly between North America and Europe (see further details below).
- b. There is a need to ensure that groups not currently involved in the large SALSEA coordinated programmes can gain sufficient information on those programmes to avoid duplication of effort and generate compatible results.
- c. A further review of the research inventory and update to the SALSEA plan should be undertaken after the completion of the current marine survey programmes in 2011.

5.2 Conclusions relating to the research inventory and SALSEA Plan:

- a. The structure of the IASRB research inventory should be reviewed to make it easier to access information on ongoing and completed projects relating to salmon mortality in the sea. (1a)
- b. The SALSEA Plan needs to be reviewed and updated to spell out the need for any future work on the impact of aquaculture on the marine mortality of salmon. (3.5.2)

5.3 Conclusions relating to improved co-ordination and communication:

- a. It appears that there are good mechanisms in place (including through SALSEA-MERGE) to coordinate genetic studies in Europe, including ensuring all groups use the same satellite markers and comparable sampling and analytical techniques. However, there was felt to be some lack of co-ordinations between current genetics work on Atlantic salmon in Europe and North America, although the European groups were understood to have good contacts with geneticists working on Pacific salmon. (2.1.2.a)
- b. It is important to ensure that the results obtained from the scale analyses being undertaken by different research groups are comparable and can be brought together in the ultimate synthesis of results. SAG should investigate this requirement further to determine whether there is a need for a workshop and whether this should be supported by the IASRB. (2.3.2 a)
- c. If a workshop on scale analysis is established (2.3.2.a) it could also discuss the feasibility of establishing a common scale database for all countries with historic scale data that may be used in scale growth and microchemistry analyses. (2.3.2 b)
- d. At their meeting in 2008, the ICES Study Group on Salmon Age Reading, which had previously included only Baltic salmon biologists, recommended that they should extend their remit to bring in Atlantic salmon biologists for a meeting in 2010. It was suggested that any future meeting of SGSAD should be coordinated with current activities with the SALSEA Plan. (2.3.2 c)

- e. The ICES SGBICEPS could provide a suitable forum for co-ordinating work on the influence of biological characteristics of Atlantic salmon smolts on their marine mortality; consideration should therefore given to including this in the terms of the reference for future meetings; (3.1.2 a)
- f. IASRB should be asked to consider providing funding for the participation of two experts from outside national laboratories in the future meetings of SGBICEPS. (3.1.2 b)
- g. Efforts should be made to establish a network of scientists working on topics related to the effects of physical factors in fresh water on marine mortality of Atlantic salmon in order to promote complementary studies, avoid duplication and gain from cooperative planning and analysis of existing data. The ICES Study Group, SGBICEPS could provide a means for establishing such a network (see 3.2.1 Conclusion (a).) (3.2.2.a)
- h. Efforts should be made to co-ordinate studies of the condition and lipid content of 1SW & 2SW salmon returning to netting stations in northern and eastern Scotland (Marine Scotland FW Laboratory and Scottish Oceanographic Institute, St. Andrews) with related work elsewhere to provide comparable results from different parts of the North Atlantic. (4.3.2 b)

5.4 Conclusions relating to additional research:

- a. Efforts should be made to determine the extent of the possible selective bias in the current marine sampling programmes (e.g. of different sized smolts emigrating from different areas and at different times) in order that this can be taken into account in the analysis of the results. (2.2.1 a)
- b. There remains a need for further developmental work on methods to sample post-smolts and adult salmon in the open ocean that are less selective than the methods currently in use. Such work should be included in any future programme to extend marine survey and sampling programmes for salmon. (2.2.1 b)
- c. A preliminary descriptive model of factors in freshwater that affects behaviour, life history and survival and the interaction between them should be developed and run utilizing available quantitative information. This should provide a mechanism to identify major gaps in knowledge and to assess their relative importance. (3.2.2 b)
- d. There is potential for a number of on-going programmes to contribute to the studies of the effects of freshwater contaminants on the marine survival of salmon, and those working in these areas should be encouraged to make best use of these opportunities. (3.3.2)
- e. There is a need to assess whether increased predator numbers in specific regions of the ocean or at specific times could account for observed reductions in marine survival of salmon. (3.4.2 a)
- f. There are a range of options for extending current studies on the evaluation of levels of predation on salmon stocks in areas where potential problems are identified (3.4.2 b):
 - Extend the study the occurrence of salmon DNA in seal scats to a wider range of haul out sites (Marine Scotland FW Laboratory and SMRU).
 - Extend the application of P.I.T detection technology currently being used to study sea trout predation by seals to salmon (Marine Scotland FW Laboratory and SMRU).
 - Intensify observations on cetacean predation on salmon (SMRU).

- Initiate study of the occurrence of salmon tags and salmon DNA at *coastal* bird colonies.
- Review the current status of industrial fisheries in the north Atlantic.
- Extend the study of salmon migration pathways to the central and northern North Sea.
- g. Further studies relating to the production and distribution of important marine organisms to physical parameters such as sea surface temperature, currents, wind speed, wave action, salinity, etc. are needed to facilitate and enhance a comprehensive study of the distribution and migration mechanisms for salmon in the sea. (4.1.2)
- h. The use of tagging technologies, particularly archival tags, should be encouraged as a cost effect method to complement and enhance the results from marine surveys. (4.3.2 a)
- i. There is a need to initiate the development of an integrated model covering the whole pre-smolt and smolt phase with main focus on survival. (4.2.2)

5.5 Other conclusions:

- a. Some concern was expressed about the need to clearly distinguish between the delivery of practical results employing established genetic techniques (e.g. microsatelitte markers) from the efforts to develop new techniques (e.g. SNPs). (2.1.2 b)
- b. Work on the further development of trawl survey techniques has not occurred to the extent envisioned in the SALSEA Plan. Any new or ongoing efforts will likely not benefit the current programme of marine surveys as we are entering the 2nd and final year of that programme. (4.2.2)

Annex 1: Members of the Review Group

Gerald Chaput	Canada
Gudni Gudbergsson	Iceland
Lars Hansen	Norway
Jan Arge Jacobsen	Denmark (in respect of Faroes and Greenland)
Niall O'Maoileidigh	European Union
Ted Potter (Chair)	European Union
Sergei Prusov	Russian Federation
Elena Samoylova	Russian Federation
Tim Sheehan	USA
Dick Shelton	AST
Fred Whoriskey	ASF
Peter Hutchinson	NASCO Secretariat